蝴蝶兰风评网CTRL+D收藏本站 您好!欢迎来到蝴蝶兰风评

当前位置:  > 专题知识 > 正文

无限不循环小数是分数吗

2023-10-21 09:00:19

无限不循环的小数不是分数,而是无理数。因为无限不循环的小数永远都无法用分数的形式来表示,例如圆周率等于3.1415926…就无法用分数来表示,就不是分数。

无限不循环小数也称为无理数

无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。

常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。

无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。

分数的定义

分数表示一个数是另一个数的几分之几,或一个事件与所有事件的比例。把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。分子在上,分母在下。

最早的分数

最早的分数是整数倒数:代表二分之一的古代符号,三分之一,四分之一,等等。埃及人使用埃及分数c。 1000 bc。大约4000年前,埃及人用分数略有不同的方法分开。他们使用最小公倍数与单位分数。他们的方法给出了与现代方法相同的答案。埃及人对于Akhmim木片和二代数学纸莎草的问题也有不同的表示法。

分数的性质

分数中间的一条横线叫做分数线,分数线上面的数叫做分子,分数线下面的数叫做分母。读作几分之几。

分数可以表述成一个除法算式:如二分之一等于1除以2。其中,1 分子等于被除数,"-"分数线等于除号,2 分母等于除数,而0.5分数值则等于商。

分数还可以表述为一个比,例如;二分之一等于1:2,其中1分子等于前项,—分数线等于比号,2分母等于后项,而0.5分数值则等于比值。

分数的基本性质:分数的分子和分母都乘以或都除以同一个不为零的数,所得到的分数与原分数的大小相等。

分数还有一个有趣的性质:一个分数不是有限小数,就是无限循环小数,像π等这样的无限不循环小数,是不可能用分数代替的。

小数化分数的方法

有限小数化分数,小数部分有几个零就有几位分母。

如是纯循环小数,循环节有几位,分母就有几个9。

如是混循环小数,循环节有几位,分母就有几个9;不循环的数字有几位,9后面就有几个0,分子是第二个循环节以前的小数部分组成的数与小数部分中不循环部分组成的数的差。

以上内容由网友投稿,蝴蝶兰整理,如有侵权,请联系我们进行删除!

留言与评论(共有 条评论)
   
验证码: 匿名发表
搜索
标签列表